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Abstract. Alternating sign matrices are known to be equinumerous with descending
plane partitions, totally symmetric self-complementary plane partitions and alternat-
ing sign triangles, but a bijective proof for any of these equivalences has been elusive
for almost 40 years. In this extended abstract, we provide a sketch of the first bijective
proof of the enumeration formula for alternating sign matrices, and of the fact that
alternating sign matrices are equinumerous with descending plane partitions. The
bijections are based on the operator formula for the number of monotone triangles due
to the first author. The starting point for these constructions were known “computa-
tional” proofs, but the combinatorial point of view led to several drastic modifications
and simplifications. We also provide computer code where all of our constructions
have been implemented.

1 Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {0,1,-1} such that
in each row and each column the non-zero entries alternate and sum up to 1. Robbins
and Rumsey introduced alternating sign matrices in the 1980s [RR86] when studying
their A-determinant (a generalization of the classical determinant) and showing that the
A-determinant can be expressed as a sum over all alternating sign matrices of fixed size.
The classical determinant is obtained from this by setting A = -1, in which case the sum
reduces so that it extends only over all ASMs without -1’s, i.e., permutation matrices, and
the well-known formula of Leibniz is recovered. Numerical experiments led Robbins and
Rumsey to conjecture that the number of n x n alternating sign matrices is given by the
surprisingly simple product formula

n-l(3;4+1)!
11 ((?Z;))!" (1.1)

i=0

“ilse.fischer@univie.ac.at. The first author acknowledges the financial support from the Austrian Sci-
ence Foundation FWF, SFB grant F50, and the second author acknowledges the financial support from the
Slovenian Research Agency (research core funding No. P1-0294).


mailto:ilse.fischer@univie.ac.at

2 Ilse Fischer and MatjaZ Konvalinka

Back then the surprise was even bigger when they learned from Stanley (see [B’99,
Bre99]) that this product formula had recently also appeared in Andrews’ paper [And79]
on his proof of the weak Macdonald conjecture, which in turn provides a formula for the
number of cyclically symmetric plane partitions. As a byproduct, Andrews had introduced
descending plane partitions and had proved that the number of descending plane partitions
(DPPs) with parts at most 7 is also equal to (1.1). A descending plane partition is a filling
of a shifted Ferrers diagram with positive integers that decrease weakly along rows and
strict along columns such that the first part in each row is greater than the length of its
row and less than or equal to the length of the previous row.

Since then the problem of finding an explicit bijection between alternating sign ma-
trices and descending plane partitions has attracted considerable attention from combi-
natorialists, and to many of them it is a miracle that such a bijection has not been found
so far. All the more so because Mills, Robbins and Rumsey also introduced several
“statistics” on alternating sign matrices and on descending plane partitions for which
they had strong numerical evidence that the joint distributions coincide as well, see
[MRRS83].

There were a few further surprises yet to come. Robbins introduced a new operation
on plane partitions, complementation, and had strong numerical evidence that totally
symmetric self-complementary plane partitions (TSSCPPs) in a 2n x 2n x 2n-box are also
counted by (1.1). Again this was further supported by statistics that have the same joint
distribution as well as certain refinements, see [MRR86, Kra96, Kral6, BC16]. We still
lack an explicit bijection between TSSCPPs and ASMs, as well as between TSSCPPs and
DPPs.

In his collection of bijective proof problems (which is available from his webpage)
Stanley says the following about the problem of finding all these bijections: “This is
one of the most intriguing open problems in the area of bijective proofs.” In Krattenthaler’s
survey on plane partitions [Kral6] he expresses his opinion by saying: “The greatest, still
unsolved, mystery concerns the question of what plane partitions have to do with alternating sign
matrices.”

Many of the above mentioned conjectures have since been proved by non-bijective
means. Zeilberger [Zei9%a] was the first who proved that n x n ASMs are counted by
(1.1). Kuperberg gave another shorter proof [Kup96] based on the remarkable observa-
tion that the six-vertex model (which had been introduced by physicists several decades
earlier) with domain wall boundary conditions is equivalent to ASMs, and he used the
tech niques that had been developed by physicists to study this model. Andrews enu-
merated TSSCPPs in [And94]. The equivalence of certain statistics for ASMs and of
certain statistics for DPPs has been proved in [BDFZ]13], while for ASMs and TSSCPPs
see [Zei96b, FZ]J08], and note in particular that already in Zeilberger’s first ASM paper
[Zei96a] he could deal with an important refinement. Further work including the study
of symmetry classes has been accomplished; for a more detailed description of this we
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defer to [BFK17]. Then, in very recent work, alternating sign triangles (ASTs) were in-
troduced in [ABF16], which establishes a fourth class of objects that are equinumerous
with ASMs, and also in this case nobody has so far been able to construct a bijection.

The first author gave her “own” proof of the ASM theorem in [Fis06, Fis07, Fis16] and
expressed some speculations in the direction of converting these proofs into bijections
in the final section of the last paper. Part of the objective, namely bijective proofs of the
enumeration formula for the number of ASMs and of the fact that ASMs and DPPs are
equinumerous, has now been achieved in [FKa, FKb], the first two papers in a planned
series. This extended abstract presents the major steps in these constructions.

After having figured out how to actually convert computations and also having
shaped certain useful fundamental concepts related to signed sets (see Section 2), the
translation of several steps became quite straightforward; some steps were quite chal-
lenging. Then a certain type of (exciting) dynamics evolved, where the combinatorial
point of view led to simplifications and other (in some cases drastic) modifications, and
after this process the original “computational” proof is in fact rather difficult to recog-
nize.

The bijection that underlies the bijective proof of the enumeration formula of ASMs
as well as the one of the refined enumeration formula involves the following sets:

* Let ASM,, denote the set of ASMs of size n xn, and, for 1 <i <n, let ASM,, ; denote
the subset of ASM,, of matrices that have the unique 1 in the first row in column i.
There is an obvious bijection ASM,, ; - ASM,,_; which consists of deleting the first
row and first column.

e Let B, denote the set of (2n —1)-subsets of [3n-2] = {1,2,...,3n -2} and, for
1<i<n,let B,; denote the subset of B, of those subsets whose median is n +i-1.

Clearly, [B,| = (31;) and |B,;| = (") (" 11).

e Let DPP, denote the set of descending plane partitions with parts no greater than
n; let DPP,, ; the subset of descending plane partitions with i -1 occurrences of n.
We clearly have DPP,, ; = DPP,,_;.

To emphasize that we are not merely interested in the fact that two signed sets have
the same size, but want to use the constructed signed bijection later on, we will be using
a convention that is slightly unorthodox in our field. Instead of listing our results as
lemmas and theorems with their corresponding proofs, we will be using the Problem—
Construction terminology. See for instance [Voe] and [Bau]. Our main results are the
constructions solving the following two problems.

Problem 1. ([FKb, Problem 1]) Given n € N, 1 <i <n, construct a bijection

DPPn_l X Bn,l X ASMn’i —> DPPn_l X ASMn,l X Bn,i .
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Assume that we have constructed such bijections. Then we also have a bijection

DPP,,_1 xB, 1 x ASM,, = J (DPP,,_1 xB,, 1 x ASM,, ;)

1

— | J(DPP,-1 xASM,,1 xB,, ;) = DPP,,_1 x ASM,, 1 x B, — DPP,,_1 x ASM,,_1 x By,
i
for every n. But by induction, that gives a bijection

DPPq x -+ x DPP;,_1 x By 1 -+ x B, 1 x ASM;, — DPPg x--- x DPP,,_1 x By x--- x By,

which, since DPP; is non-empty (as it contains the empty DPP), proves the ASM theorem
3i-2Y 41 (s

i Bl _ I (i) 7 Gi+ D

T IBia| 12, (21,1_—12) o (n+i)!

and also the refined ASM theorem

| ASM,, | =

|ASM,,_1 |-|By: | (55205 ﬁ (Bi+1)!
|Bn,1

G s et

Problem 2. ([FKb, Problem 2]) Given n €N, 1< j<n, construct a bijection

‘ASMn,i | =

DPPn_l X ASMn,] - ASMn,l X DPPn/] .

Once this is proven it follows that |[DPP,_1[-|ASM,, ;| = |ASM,,_1|-|DPP, ;|. By in-
duction, we can assume |DPP,,_1|=|ASM,, 1| and so | ASM,, ;| = |DPP,, ;|. Summing this
over all j implies | DPP, | = | ASM,, |.

For several obvious reasons, we found it essential to check all our constructions with
computer code'; for example, the code can possibly be used to identify new equivalent
statistics. Another is that it might be possible to find some patterns in the bijection and
to simplify the description.

2 Signed sets and sijections

It seems that signs and cancellations in the proof are unavoidable. In this section, we
briefly introduce the concepts of signed sets and sijections, signed bijections between
signed sets. We present the basic concepts here, and refer the reader to [FKa, §2] for
all the details and more examples.

A signed set is a pair of disjoint finite sets: S = (S*,57) with S* n S~ = @. Equivalently,
a signed set is a finite set S together with a sign function sign:S - {1,-1}, but we will

'The code (in python) is available at https://www.fmf .uni-1j.si/ konvalinka/asmcode.html.
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mostly avoid the use of the sign function. Signed sets are usually underlined throughout
the extended abstract with the following exception: an ordinary set S always induces a
signed set S = (S,9), and in this case we identify S with S. We summarize related
notions.

The size of a signed set S is |S| = |S*| - |S~|. The opposite signed set of S is -S = (57, 5").
The Cartesian product of signed sets Sand Tis SxT = (S* xT*uS™ xT~,S* xT-uS™ xT*).
The disjoint union of signed sets S and T is SuT = (Sx ({0},2)) u (T x ({1},@)). The
disjoint union of a family of signed sets S, indexed with a signed set T is

LIS =U(S, Xﬂ)
teT teT
Here {t} is ({t},@) if t ¢ T* and (g,{t}) if t € T~. Most of the usual properties of
Cartesian products and disjoint unions of ordinary sets extend to signed sets.
An important type of signed sets are signed intervals: for a,b € Z, define

{([a,b],@) ifa<b

[a,b] = ] .
(g,[b+1,a-1]) ifa>b

Here [a,b] stands for the usual interval in Z. The signed sets that are of relevance
in this extended abstract are usually constructed from signed intervals using Cartesian
products and disjoint unions.

The role of bijections for signed sets is played by “signed bijections”, which we call
sijections. A sijection ¢ from S to T,

p:s=1T,

is an involution on the set (ST uS~)u (T uT~) with the property ¢(S*uT") =S uT*.
It follows that also (S~ uT*) = ST uT-. A sijection can also be thought of as a collection
of a sign-reversing involution on a subset of S, a sign-reversing involution on a subset
of T, and a sign-preserving matching between the remaining elements of S with the
remaining elements of T. The existence of a sijection ¢:S = T clearly implies |S| =
[S* =157 = T*| =T = [Z].

In Proposition 2 of [FKa] it is explained how to construct the Cartesian product and
the disjoint union of sijections, and also how to compose two sijections using a variant
of the Garsia-Milne involution principle. These constructions are fundamental for most
of the constructions in this extended abstract. It follows that the existence of a sijection
between S and T is an equivalence relation; it is denoted by “~”.

The sijection that is underlying many of our constructions is the following.

Problem 3. ([FKa, Problem 1]) Given a,b,c € Z, construct a sijection

w=w,pc[a,c] = [ablulb+1,c].
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Construction. For a <b < c and c < b < a, there is nothing to prove. For, say, a <c < b, we
have [a,b]u[b+1,c] = ([a,c]u[c+1,b])u[b+1,c] =[a,c]u([c+1,b]u(-[c+1,b])). Since
there is a sijection [c+1,b]u(—[c+1,b]) = &, we get a sijection [a,b]u[b+1,c] = [a,c].
The cases b<a<c,b<c<a, and c <a <b are analogous. l

Using the map «, it is not difficult to construct some sijections on signed boxes, Carte-
sian products of signed intervals.

Problem 4. ([FKa, Problem 2]) Given a = (ay,...,a,_1) € Z"1, b = (by,...,b,_q) € Z"1,
x eZ, write S; = ({a;}, ) u(@,{b; +1}), and construct a sijection

,B = ,Ba,b,x: [alr bl] X X [an—lz bn—l]
— |_| [11112] x [12/ 13] X X [ln72/ li’l—l] x [li’l—llx]‘

(lyeedn-1)€Sy x%S, 4

Problem 5. ([FKa, Problem 3]) Given k = (ky,...,ky) € Z" and x € Z, construct a sijection

Y= r)/k,x: [klikZ] Xoeee X [kn—l/ kn]

n
— | | [k, ko] x - x [kisg, x+n—i] x [x +n—i,kjq] % x [ky_1,kn]
i1

n-2
L |_I cee X [ki—llki] X [ki+1 +1,x+n —i—l] X [ki+1,x+n—i—2] X [ki+2/ki+3] X oeee,
i=1

An important signed set is the set of all Gelfand-Tsetlin patterns, or GT patterns
for short (compare with [Fis05]), with a prescribed bottom row. For k € Z, define
GT(k) = ({},9), and for k = (ky,...,k,) € Z", define recursively

GT(K) =GI(ky, ... k)= Ll GI(y...,loy).
le[ky ko ]x--x[ky_1,kn]

In particular, GT(a,b) ~ [a,b]. Of course, one can think of an element of GT(k) in the

usual way, as a triangular array A = (Ai,]-)ls]-ggn of (”5 1) numbers.

The following sijections are crucial for GT patterns. In the constructions, we typically
use disjoint unions of previously constructed sijections on signed boxes (e.g. Problem 4).

Problem 6. [FKa, Problem 4] Given a = (ay,...,a,-1) € Z" 1, b = (by,...,by_1) € Z"7},
x € Z, construct a sijection

.0 = Pa,b,x: |_| Q(l) = |_| ﬂ(llr oo /ln—ll X),

le[aq,by]xx[a,_1,b,-1] (lyeeeslyo1)€S x-S, _4

where S; = ({a;}, @) u (2, {b; +1}).
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Problem 7. [FKa, Problem 5] Given k = (ky,...,ky) € Z" and i, 1 <i < n-1, construct a
sijection
7T = ﬂk,iig(kl, .. ,kn) = —Q(kl,. . -rki—lrki+1 + 1/ki - 1/ki+2/- . ,kn)

Given a = (ay,...,ay) € Z", b = (by,...,by) € Z" such that for some i, 1 <i < n-1, we have
aj.1 =a;—1and b;,1 = b; - 1, construct a sijection

0= 0o, L] GI(1) = 2.
le[aq,by]x---x[an,bn]

The reason we place these two sijections in the same problem is that the proof is by
induction, with the induction step for 77 using ¢ and vice versa.

Problem 8. [FKa, Problem 6] Given k = (ky,...,ky) € Z" and x € Z, construct a sijection

n
T= Tk,xzﬂ(klr---/kn) = Uﬂ(kl,...,ki_l,x+n—i,k,-+1,...,kn).
i=1

3 Monotone triangles and the operator formula

Monotone triangles with bottom row 1,2, ..., are in easy bijective correspondence with
n x n alternating sign matrices. For our purpose we need to have a notion of monotone
triangles with arbitrary integer bottom rows. In order to achieve this, suppose that
k=(ky,...,kp)and 1= (y,...,1,,_1) are two sequences of integers. We say that 1 interlaces
k, 1 <k, if the following holds:

1. for every i, 1 <i<n-1,I;is in the closed interval between k; and k;,;

2. if kj 1 <k;j<kjq for some i, 2 <i<n-1, then /;_; and /; cannot both be k;;
3. ifkij>1l;=kjq, theni<n-2and l;,1 =1; = kj,1;

4. ifk;=1;>kj,q, theni>2and [;_1 =1[; = k;.

A monotone triangle of size n is a map T:{(i,j):1<j<i<n} - Z so that line i -1 (i.e. the
sequence T;_11,...,Ti_1,_1) interlaces line i (i.e. the sequence T;1,...,T;;). The sign of a
monotone triangle T is (-1)", where 7 is the sum of:

* the number of strict descents in the rows of T, i.e. the number of pairs (i, ) so that
1<j<i<nand T;;>Tj,1, and

* the number of (i,j) sothat 1<j<i-2,i<nand T;; > Tj_1;=T; ;1 = Ti_1,j11 > T js2-
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It turns out that MT(k) satisfies a recursive “identity”. Let us define the signed set
of arrow rows of order n as AR, = ({7, x},{x })". The role of an arrow row u of order n
is that it induces a deformation of [kq,k;] x [ka, k3] x - x [k;,,_1, k,] as follows. Consider

[kllkZ] [kZI k3] ce [kn—Zl kn - 1] [kn—ll ki’l]
H1 H2 H3 ‘.- Hn-1 Hn,

and if p; € {x,x} (that is we have an arrow pointing towards [k;_1,k;]) then k; is de-
creased by 1 in [k;_1,k;], while there is no change for this k; if y; =~. If y; € { #, %} then
k; is increased by 1 in [k;, k;,1], while there is no change for this k; if y; =x. For a more
formal description, we let 6« (\) =dx (%) =0,(7)=0,(®)=1and 6~ () =6.(~)=0,

and we define

e(le, p) = [k1+6 - (p1), ka = O (pa) ] .. x [kn-1 + 0+ (ptn-1), kn = 6x (pn)]

for k = (ky,...,k,) and u € AR,. The following is not difficult.

Problem 9. [FKa, Problem 7] Given k = (kq,...,ky), construct a sijection

B=EcMI(k) = || || MIQ).
HeAR, lee(k,p)

Our next goal is to define other objects that satisfy the same “recursion” as monotone
triangles. To this end, define the signed set of arrow patterns of order n as AP, = ({«,
},{A})(g). Alternatively, we can think of an arrow pattern of order n as a triangular
array T = (tp,)1<p<q<n arranged as

tl,n
T £1n-1 trn
= f,n-2 2 1-1 3, ’

t1,2 t2,3 tn—l,n

with ¢, , € {~, N\, x}, and the sign of an arrow pattern is 1 if the number of x’s is even
and -1 otherwise.

The role of an arrow pattern of order n is that it induces a deformation of (ky,...,ky),
which can be thought of as follows. Add ky,...,k, as bottom row of T (i.e, t;; = k;),
and for each v orx which is in the same »-diagonal as k; add 1 to k;, while for each
N or % which is in the same “-diagonal as k; subtract 1 from k;. More formally, letting
O, (v)=0,(x)=0u(N)=0u(x)=1and 6, () =0.(v) =0, we set

n i-1
¢i(T)= ), 6.(tij)— > 0x(t;i) and d(k, T) = (ki +c1(T), ko +c2(T), ..., kn +cn(T))
j=i+l j=1

for k= (kq,...,ky) and T € AP,,.
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For k = (kq, ..., k) define shifted Gelfand-Tsetlin patterns, or SGT patterns for short, as
the following disjoint union of GT patterns over arrow patterns of order n:

SGT(k) = T|K|p GT(d(k,T))

The difficult part of [FKa] is to prove that SGT indeed satisfies the same “recursion” as
MT. While the proof of the recursion was easy for monotone triangles, it is very involved
for shifted GT patterns, and needs almost all the sijections we have mentioned so far.

Problem 10. [FKa, Problem 9] Given k = (ky,...,k,) € Z" and x € Z, construct a sijection

D=0 || || SGTA) = SGT(k).
HeAR, lee(k 1)

From the last problem, it is easy to construct a bijective proof of the operator formula
for monotone triangles. See [FKa, pp. 3—4] for a discussion of this formula.

Problem 11. [FKa, Problem 10] Given k = (ky,...,k,) € Z" and x € Z, construct a sijection
I' =Ty »:MT(k) = SGT (k).

Construction. The proof is by induction on n. For n =1, both sides consist of one (pos-
itive) element, and the sijection is obvious. Once we have constructed I for all lists of
length less than 1, we can construct I'y , as the composition of sijections

= Dy x
MT(k) = || || MIMZ2 || || SGT() =2 SGTI(k),
HeAR, lee(k 1) HeAR, Tee(lop)
where UUT means [jear, Liee(iou) ' x- N

4 Sketch of the main bijections
Equipped with the operator formula, one can construct the following crucial sijection.
Problem 12. ([FKb, Problem 16]) Given k = (k1, ..., ky), construct a sijection
MT(k) = (-1)""' MT(rot(k)),
where rot(k) = (ko, ..., ky, k1 —n).

Note that the construction is far from easy, even assuming that we have the map TI'.
See [FKDb, §6] for a proof. On the other hand, the following is relatively simple.
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Suppose that we are given a weakly increasing sequence k = (ky,...,k;) and 7 € N.
We define
MT;(k) ={T e MT(K): Tyy_js11 = .- = Ty =k, Tyoipg # K1}
as the signed subset of monotone triangles with k; in the first position in exactly the last
i rows. Similarly, we define

mi(k) = {T € m(k): Tn—i+1,n—i+1 e = Tn,n = kn/ Tn—i,n—i # kn}

as the signed subset of monotone triangles with k;, in the last position in exactly the last
i TOWS.

Problem 13. ([FKb, Problem 21]) Given a weakly increasing k = (ky,...,k,) and i > 1, con-
struct sijections

MT, (k) — i|_|1<—1>f(“‘.”) *MT(ky +j+ 1k, .., k)
j=0 ]

and ,
i i-1 ; [l - 1] .
M () = LD/ (* )« MT Gk k1)
j=0
Based on the last two constructions, it is quite straightforward to do the following.

Problem 14. ([FKb, Problem 22]) Given n € IN and i € [n], construct a sijection

) .
|_| );+1(2f1_]+1i) ASM,, ; —> ASM,,;.

To complete the construction of the bijections for Problems 1 and 2, we need, among
other results, a few more ingredients from “bijective linear algebra”. Denote by &,, the
signed set of permutations (with the usual sign). Given signed sets P, ;, 1 <i,j < m, define

the determinant of P = [P, l]]:”]:l as the signed set

det(P) = [ | Py 1) > % Poyr(m)-
ned,,

Z]’

Among other classical properties, we have the following version of Cramer’s rule.

Problem 15. ([FKb, Problem 9]) Given P = [P pq]pq 1
Ligts By g x Xy = Y, for all i € [m], construct sijections

signed sets X;,Y; and sijections

det(P) x X; = det(P)),

where PJ = [B;’q]’;q:y B;’q =P, ifq#], B;/j =Y, forall j e [m].

Essentially, sijections like the one in Problem 15 tell us that “linear equalities” for
sijections like the one in Problem 14 can be used to find bijections on the sets involved.
See the constructions for Problems 1 and 2 in [FKDb, §7] for all details.
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5 Summary

In this extended abstract, we present the first bijective proof of the enumeration formula
for alternating sign matrices. The bijection is by no means simple; the papers [FKa, FKb]
combined have about 40 pages, with the technical constructions taking about 20 pages.
We also needed more than 2000 lines to produce a working python code. However, note
that the first proof of the ASM theorem by Zeilberger was 84 pages long. We certainly
hope that our proof will be simplified and shortened in the future.
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